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Abstract— We consider partially observable Markov decision
processes (POMDPs), that are a standard framework for
robotics applications to model uncertainties present in the
real world, with temporal logic specifications. All temporal
logic specifications in linear-time temporal logic (LTL) can be
expressed as parity objectives. We study the qualitative analysis
problem for POMDPs with parity objectives that asks whether
there is a controller (policy) to ensure that the objective holds
with probability 1 (almost-surely). While the qualitative analysis
of POMDPs with parity objectives is undecidable, recent results
show that when restricted to finite-memory policies the problem
is EXPTIME-complete. While the problem is intractable in
theory, we present a practical approach to solve the qualitative
analysis problem. We designed several heuristics to deal with
the exponential complexity, and have used our implementation
on a number of well-known POMDP examples for robotics
applications. Our results provide the first practical approach
to solve the qualitative analysis of robot motion planning with
LTL properties in the presence of uncertainty.

I. INTRODUCTION

POMDPs and robotics tasks. Discrete-time Markov deci-
sion processes (MDPs) are standard models for probabilistic
systems with both probabilistic and nondeterministic behav-
ior [18], [13]: nondeterminism represents the freedom of the
controller (such as controller for robot motion planning) to
choose a control action, while the probabilistic component
of the behavior describes the response to control actions.
In discrete-time partially observable MDPs (POMDPs) the
state space is partitioned according to observations that
the controller can observe, i.e., given the current state, the
controller can only view the observation of the state (the
partition the state belongs to), but not the precise state [24].
Accounting for uncertainty is a challenging problem for robot
motion planning [33], and POMDPs provide the appropriate
mathematical framework to model a wide variety of problems
in the presence of uncertainty, including several complex
robotics tasks such as grasping [19], navigation [28], and
exploration [31]. The analysis of POMDPs has traditionally
focused on finite-horizon objectives [24] (where the problem
is PSPACE-complete) or discounted reward objectives [32],
[22]. While the analysis problem for POMDPs is intractable
in theory, and was only applicable to relatively small prob-
lems, a practical approach for POMDPs with discounted
reward and finite-horizon objectives that scales to interesting
applications in robotics was considered in [15].
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Temporal logic properties. While finite-horizon and dis-
counted reward objectives represent an important class
of stochastic optimization problems, several problems in
robotics require a different form of specification, namely,
temporal logic specifications. In a temporal logic specifica-
tion, the objective (or the goal for the control) is specified
in terms of a linear-time temporal logic (LTL) formula that
expresses the desired set of paths in the POMDP. While
the applicability of temporal logic in robotics was advocated
already in [1], more concretely it was shown in [12] that LTL
provides the mathematical framework to express properties
such as motion sequencing, synchronization, and temporal
ordering of different motions. The analysis of (perfect-
observation) continuous time systems (such as hybrid sys-
tems) with temporal logic specifications for robotics tasks
have been considered in several works [11], [17].

POMDPs with parity objectives: Analysis problems.
POMDPs with discounted reward (or finite-horizon) objec-
tives do not provide the framework to express properties like
temporal ordering of events (which is conveniently expressed
in the temporal logic framework). On the other hand, perfect-
observation continuous time systems do not provide the
appropriate framework to model uncertainties (in contrast
uncertainties are naturally modeled as partial observation in
POMDPs). Thus POMDPs with temporal logic specifications
expressed in LTL is a very relevant and general framework
for robotics applications which we consider in this work.
Every LTL formula can be converted into a deterministic
parity automaton [29], and hence we focus on POMDPs
with parity objectives. In a parity objective, every state of the
POMDP is labeled by a non-negative integer priority and the
goal is to ensure that the minimum priority visited infinitely
often is even. The analysis problem of POMDPs with parity
objectives can be classified as follows: (1) the qualitative
analysis asks whether the objective can be ensured with
probability 1 (almost-sure satisfaction); and (2) the quan-
titative analysis asks whether the objective can be ensured
with probability at least λ ∈ (0, 1). The qualitative analysis
is especially important for the following reasons: first, since
probability 1 satisfaction of an objective is the strongest
form of satisfaction, almost-sure satisfaction provides the
strongest guarantee to satisfy the objective; and second, the
qualitative analysis is robust with respect to modeling errors
in the transition probabilities. For details of significance and
importance of the qualitative analysis problem for MDPs and
POMDPS see [5], [6] (also see Remark 2 in [4]).

Previous results. It follows from [2] that the qualitative-
analysis problem is undecidable for POMDPs with parity
objectives. However, recently in [5] it was shown that when
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restricted to finite-state controllers, the qualitative-analysis
problem for POMDPs with parity objectives is EXPTIME-
complete. In most practical applications, the controller must
be a finite-state one to be implementable. Thus for all
practical purposes the relevant question is the existence of
finite-state controllers. However, the quantitative analysis
problem for POMDPs with parity objectives is undecidable
even when restricted to finite-state controllers [25], [5].
Our contributions. In this work we present a practical
approach to solve POMDPs with parity objectives, that
given a POMDP and a parity objective, decides whether
there exists a finite-state controller that ensures almost-sure
winning satisfaction. If such a controller exists, our algorithm
outputs a witness controller. While the problem we consider
is EXPTIME-complete [5] and hence intractable in theory,
we developed a number of heuristics (practical approaches)
over the exponential-time algorithm proposed in [5]. Our
heuristics enabled us to deal with the exponential complexity
of several practical examples relevant to robotics applica-
tions. We implemented our approach and ran our implemen-
tation on a number of POMDPs collected throughout the
literature with temporal logic properties to express classical
specifications required for robot motion planning. Our results
show that all the examples can be solved quite efficiently,
and our implementation could solve the representative large
POMDP examples of [15], [23] with the classical temporal
logic specifications for robotics applications.
Related work. POMDPs with discounted reward (or finite-
horizon) objectives [22], [32] have been studied deeply
in the literature and also applied in robotics tasks [15],
[21], [20]. On the other hand, analysis of continuous time
stochastic systems with temporal logic properties for robotics
applications have also been considered [11], [17]. The works
of [12], [16], [9] consider partial-observation models, but not
POMDPs, for robotics tasks. However, the general model of
POMDPs with temporal logic properties for robotics tasks
was not considered before, and we provide the first practical
approach for qualitative analysis of POMDPs with temporal
logic properties.

II. DEFINITIONS

Given a finite set X , we denote by P(X) the set of
subsets of X , i.e., P(X) is the power set of X . A probability
distribution f on a finite set X is a function f : X → [0, 1]
such that

∑
x∈X f(x) = 1, and we denote by D(X) the

set of all probability distributions on X . For f ∈ D(X) we
denote by Supp(f) = {x ∈ X | f(x) > 0} the support of f .
POMDPs. A discrete-time partially observable Markov
decision process (POMDP) is modeled as a tuple G =
(S,A, T ,Z,O, s0) where: (i) S is a finite set of states; (ii) A
is a finite alphabet of actions; (iii) T : S × A → D(S)
is a probabilistic transition function that given a state s
and an action a ∈ A gives the probability distribution over
the successor states, i.e., T (s, a)(s′) denotes the transition
probability from state s to state s′ given action a; (iv) Z is a
finite set of observations; (v) O : S → Z is a deterministic
observation function that maps every state to an observation;
and (vi) s0 is the initial state. For more general types of the
observation function see Remark 1 in [4].

Plays and belief-supports. A play in a POMDP is an
infinite sequence (s0, a0, s1, a1, . . .) such that for all i ≥ 0
we have T (si, ai)(si+1) > 0. We write Ω for the set
of all plays. For a finite prefix w ∈ (S · A)∗ · S of a
play, we denote by Last(w) the last state of w. For a
finite prefix w = (s0, a0, s1, a1, . . . , sn) we denote by
O(w) = (O(s0), a0,O(s1), a1, . . . ,O(sn)) the observation
and action sequence associated with w. For a finite
sequence ρ = (z0, a0, z1, a1, . . . , zn) of observations
and actions, the belief-support B(ρ) after the prefix ρ
is the set of states in which a finite prefix of a play
is with positive probability after the sequence ρ of
observations and actions, i.e., B(ρ) = {sn = Last(w) | w =
(s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for all 0 ≤
i ≤ n. O(si) = zi}.
Policies. A policy is a recipe to extend prefixes of plays
and is a function σ : (S · A)∗ · S → D(A) that given
a finite history (i.e., a finite prefix of a play) selects a
probability distribution over the actions. Since we con-
sider POMDPs, policies are observation-based, i.e., for
all histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ =
(s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n we

have O(si) = O(s′i) (i.e., O(w) = O(w′)), we must have
σ(w) = σ(w′). In other words, if the observation sequence
is the same, then the policy cannot distinguish between
the prefixes and must play the same. We now present an
equivalent definition of observation-based policies such that
the memory of the policy is explicitly specified, and will be
required to present finite-memory policies.

Policies with memory and finite-memory policies A pol-
icy with memory is a tuple σ = (σu, σn,M,m0) where:
(i) (Memory set). M is a denumerable set (finite or infinite) of
memory elements (or memory states). (ii) (Action selection
function). The function σn : M → D(A) is the next action
selection function that given the current memory state gives
the probability distribution over actions. (iii) (Memory update
function). The function σu : M × Z × A → D(M) is the
memory update function that given the current memory state,
the current observation and action, updates the memory state
probabilistically. (iv) (Initial memory). The memory state
m0 ∈ M is the initial memory state. A policy is a finite-
memory policy if the set M of memory elements is finite.
A policy is memoryless if the set of memory elements M
contains a single memory element.

Objectives. An objective specifies the desired set of paths
(or behaviors) in a POMDP. A common approach to specify
objectives is using LTL formulas [10], and LTL formulas
can express all commonly used specifications in practice. We
first give some informal examples of objectives used in the
literature [12], [27], [7], and we use the following notation
for LTL temporal operators such as eventually (♦ ), always
(� ), next (© ) and until (U ).
• Liveness objective: Given a set of goal states T ⊆ S,

the liveness objective is to reach the goal states (in LTL
notation ♦T ).

• Safety: Given a set of safe states L ⊆ S, the objective
is to stay in the safe states (in LTL notation �L).

• Reach a goal while avoiding obstacles: The objective
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generalizes the previous two objectives and is defined by
a set of obstacles O1, O2, . . . , On, where every obstacle
Oi for 1 ≤ i ≤ n is defined by a set of states Oi ⊆ S ,
and a set of goal states T ⊆ S, the objective is to reach
the goal states while avoiding all the obstacles (in LTL
notation ¬(O1 ∨O2 . . . ∨On)U T ).

• Sequencing and Coverage: Given a sequence of loca-
tions S1, S2, . . . , Sn where every location Si for 1 ≤
i ≤ n is given by a set of states Si ⊆ S, the sequencing
objective is to visit all the locations in the given order
(in LTL notation ♦ (S1 ∧ ♦ (S2 ∧ ♦ (. . . (♦Sn)))). The
coverage objective is to visit all the locations in any
order (in LTL notation ♦S1 ∧ ♦S2 ∧ . . . ∧ ♦Sn).

• Recurrence: Given a set of states S ⊆ S, the objective
is to visit the set of states S infinitely often (in LTL
notation �♦S).

Parity objectives. We will focus on POMDPs with parity
objectives, since every LTL formula can be translated to a
deterministic parity automaton [29], [26]. Given a POMDP,
an LTL formula, and an equivalent deterministic parity
automaton for the formula, the synchronous product of the
POMDP and the automaton gives us a POMDP with a
parity objective. For all the above objectives mentioned, the
translation to parity objectives is simple and straightforward.
• Parity objectives: Given a priority function p : S →
N assigning every state a non-negative priority. A play
ρ = (s0, a0, s1, a1, s2, a2, . . .) is winning (i.e., satisfies
the parity objective) if the minimum priority appearing
infinitely often in the play is even.

• coBüchi objectives: The coBüchi objectives are a spe-
cial case of parity objectives, where the priority function
assigns only values 1 and 2.

We consider the special case of coBüchi objectives because
our algorithmic analysis will reduce POMDPs with parity
objectives to POMDPs with coBüchi objectives.
Qualitative analysis. Given a policy σ, let Pσs0(·) denote
the probability measure obtained by fixing the policy in
the POMDP [34]. A policy σ is almost-sure winning for
a parity objective ϕ if Pσs0(ϕ) = 1. The qualitative analysis
problem given a POMDP and a parity objective asks for the
existence of an almost-sure winning policy. For significance
of qualitative analysis see Remark 2 in [4].

III. EXISTING RESULTS

We first summarize the existing results.
Previous results. The qualitative analysis of POMDPs with
parity objectives is undecidable [2]; and the problem is
EXPTIME-complete when restricted to the practical case of
finite-memory policies [5]. It was also shown in [5] that the
traditional approach of subset construction does not provide
an algorithmic solution for the problem. The quantitative
analysis problem of POMDPs with parity objectives is un-
decidable even for finite-memory policies [25], [5].
Algorithm from [5]. We now summarize the key ideas of the
algorithm for qualitative analysis with finite-memory policies
presented in [5].
Step 1: Reduction to coBüchi objectives. The results of [5]
present a polynomial-time reduction from POMDPs with

parity objectives to POMDPs with coBüchi objectives for
qualitative analysis under finite-memory policies.
Step 2: Solving POMDPs with coBüchi objectives. The
main algorithmic result of [5] is solving the qualitative
analysis problem for POMDPs with coBüchi objectives. The
key proof shows that if there exists a finite-memory almost-
sure winning policy, then there exists a projected policy
σ = (σu, σn,M,m0) that is also almost-sure winning and
the projected policy requires at most 26·|S| memory states,
i.e., M ≤ 26·|S|. The fact that given a POMDP there
exists a bound on the number of memory elements required
by an almost-sure winning policy already establishes the
decidability result. Another consequence of the result is that
projected policies are sufficient for almost-sure winning in
POMDPs. The knowledge of the memory elements, the struc-
ture of memory-update function σu, and the action-selection
function σn are crucial for the last step of the algorithm
and our results. The key components of the projected policy
memory elements M are as follows: (i) The first component
is the belief-support, i.e., the subset of states in which
the POMDP is with positive probability. (ii) The second
component (namely BoolRec) denotes whether a state and
the current memory is recurrent or not, i.e., if reached, will
be almost-surely visited infinitely often. (iii) Finally, the third
component (namely SetRec) stores a mapping from the states
of the POMDP to the priority set of the reachable recurrent
classes. The memory elements m ∈ M will be written as
follows: m = (Y,B,L), where Y ⊆ S is the belief-support
component, B : S → {0, 1} is the BoolRec component,
and the SetRec component is L : S → P(P(D)), where
D ⊆ N is the set of priorities used by the parity objective,
in particular for coBüchi objectives we have D = {1, 2}.
Step 3: Solving synchronized product. It follows from
the previous steps that the qualitative analysis of POMDPs
reduces to the problem of deciding whether in a given
POMDP G with a coBüchi objective exists a projected
almost-sure winning policy. The final algorithmic idea is to
construct an exponential POMDP, called belief-observation
POMDP Ĝ, which intuitively is a synchronized product of
the original POMDP and the most general projected policy.
Intuitively, the advantage of considering the synchronized
product is that the memory elements of the projected policy
are already present in the state space of the POMDP Ĝ. It
follows that if there exists a projected almost-sure winning
policy in the POMDP, then there exists a memoryless almost-
sure winning policy in the synchronized product POMDP,
and vice versa. Finally, to decide whether there exists a mem-
oryless almost-sure winning policy in the belief-observation
POMDP Ĝ can be solved in polynomial time.

IV. PRACTICAL APPROACHES AND HEURISTICS

In this section we present the key ideas and heuristics
that allowed efficient implementation of the algorithmic ideas
of [5]. Step 1 and Step 3 of the algorithmic ideas of [5] are
polynomial time and we have implemented the algorithms
proposed in [5]. Step 2 of the algorithmic ideas of [5]
is exponential and posed the main challenge for efficient
implementation. We employed several heuristics to make
Step 2 practical and we describe them below.
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Heuristics. Our heuristics are based on ideas to reduce the
number of memory elements M required by the projected
policy. As the projected policy plays in a structured way,
we exploit the structure to reduce its size employing the
following heuristics.

1) The first heuristic reduces the size of the memory set
M of the projected policy. Intuitively, instead of storing
the mappings BoolRec and SetRec for every state s ∈
S of the POMDP, we store the mappings restricted to
the current belief-support, i.e., given a memory element
m = (Y,B,L) we consider the BoolRec component B
to be of type B : Y → {0, 1}, similarly for the SetRec
component L we restrict the domain of the function
to Y , i.e., we have L : Y → P(P(D)) (D denotes
the set of priorities). Intuitively, for all states that are
not in the belief-support Y , the probability of being in
them is 0. Therefore, the information stored about these
states is not relevant for the projected policy. The size of
the current belief-support is often significantly smaller
than the number of states, as the size of the belief-
support is bounded by the size of the largest observation
in the POMDP, i.e., the size of the belief-support is
bounded by maxz∈Z |O−1(z)|. It follows, that it also
improves the theoretical bound on the size of the belief-
observation POMDP presented in [5].

2) The second reduction in memory relies on the following
intuition: given a memory element m = (Y,B,L) by
the first heuristic we store the mappings only for the
states of the current belief-support Y , and the belief-
support represents exactly the states that the POMDP
is in with positive probability. An important property
of the projected policy is that the SetRec function
L : S → P(P(D)) corresponds to the priority set of
reachable recurrent classes. Intuitively, for every state
s ∈ Y , we have that every reachable recurrent class
of the projected policy from state s and memory m
will have the priority set of its states U in L(s), and
for every priority set in U ∈ L(s), there exists a
recurrent class with a priority set U , that is reachable
with positive probability. Therefore, all the reachable
recurrent classes according to the SetRec mapping are
reached with positive probability with the projected
policy. As the projected policy is almost-sure winning
it follows that all the reachable recurrent classes must
also be winning. Since the objective in the POMDP Ĝ is
a coBüchi objective, we have that a winning recurrent
class must consist only of coBüchi states (only states
with priority 2). Therefore, we can restrict the the range
of the SetRec mapping to a singleton {{2}}. It follows
that we do not have to consider the SetRec component
of the projected policy at all.

The main contribution of the above two ideas is that the
running time is no longer exponential in the number of the
states of the POMDP, but rather in the largest belief-support
reachable. Since in many practical cases, the largest belief-
support reachable is quite small, our heuristics on top of
the algorithmic ideas of [5] provide an efficient solution for
several examples (as illustrated in Section V).

V. CASE STUDIES

We implemented all the algorithmic ideas of [5] along
with the improvements as described in Section IV. Our
implementation is in Java, and we have tested it on a number
of well-known examples from the literature. The computer
we used is equipped with 8GB of memory and a quad-core
i7 2.0 GHz CPU. Detailed descriptions of all our examples
are provided in [4] (we present succinct descriptions below).

Space Shuttle. The space shuttle example was originally
introduced in [8], and it models a simple space shuttle
that delivers supplies to two space stations. There are three
actions that can be chosen: go-forward, turn-around, and
backup. The goal is to visit the two stations delivering goods
infinitely often and avoid bumps (trying to go forward when
facing a station). The docking is simulated by backing up
into the station. The parity objective has 3 priorities and is as
follows: traveling through the space has priority 3, delivering
goods to the station that was not visited has priority 2,
and bumping has priority 1. Therefore, the objective is to
control the shuttle in a way that it delivers supplies to both
stations infinitely often, while bumping into the space station
only finitely often. The POMDP corresponding to the one
introduced in [8] has 11 states. Along with the original
POMDP of [8] we also consider two variants with 13 and
15 states, respectively, that intuitively increases the distance
to travel between the stations, and this affects the amount of
uncertainty in the system and leads to larger belief-support
sets (and hence longer running times). The POMDPs after the
coBüchi reduction have 23, 27, and 31 states, respectively,
and were solved in 0.07, 0.24, and 1.01 seconds, respectively.

Cheese Maze [23]. The problem is given by a maze modeled
as a POMDP. The movement in the POMDP is deterministic
in all four directions – north, south, east, and west. Move-
ments that attempt to move outside of the maze have no
effect on the position. The observations correspond to what
would be seen in all four directions immediately adjacent to
the location. Some of the states are marked as goal states
and some are marked as bad states. Whenever a goal state is
visited the game is restarted. The objective is to visit the goal
states infinitely often while the bad states should be visited
only finitely often. The original maze introduced in [23] has
11 states. We also consider extensions of the maze POMDP
that has 23 states. Depending on the amount of uncertainty
about the current position after restarting the game we have
three variants, namely, easy, medium, and hard, for both sizes
of the maze. The number of states the POMDPs have after
the coBüchi reduction is 23 and 47 states, respectively and
all the cases were solved in less than 7 seconds.

Grid. The example is based on a problem introduced in [23]
and consists of a grid of locations. As in the previous
example some of the locations are goal locations and some
are marked as bad locations. Whenever a goal location is
reached the game is restarted to the initial state. The objective
is to visit the goal locations infinitely often while visiting
the bad locations only finitely often. In the very first step the
placement of the goal and bad states is done probabilistically
and does not change during the play. The goal is to learn the
maze while being partially informed about its surroundings.
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We consider five variants that differ in size, i.e., the grid
4 × 4 is has 33 states, 5 × 5 has 51 states, 6 × 6 has 73
states, 7 × 7 has 99 states, and 8 × 8 has 129 states. After
the coBüchi reduction the POMDPs have 67, 103, 147, 199,
and 259 states, respectively. All the variants were solved in
less than 6 seconds.
RockSample problems. We consider a modification of the
RockSample problem introduced in [30] and used later in [3].
It is a scalable problem that models rover science exploration.
The rover is equipped with a limited amount of fuel and can
increase the amount of fuel only by sampling rocks in the
immediate area. The positions of the rover and the rocks
are known, but only some of the rocks can increase the
amount of fuel; we will call these rocks good. The type
of the rock is not known to the rover, until the rock is
sampled. Once a good rock is used to increase the amount
of fuel, it becomes temporarily a bad rock until all other
good rocks are sampled. We consider variants with different
maximum capacity of the rover’s fuel tank. An instance of
the RockSample problem is parametrized with two param-
eters [n, k]: map size n × n and k rocks is described as
RockSample[n,k]. The POMDP model of RockSample[n,k]
is as follows: The state space is the cross product of 2k+1+c
features: Position = {(1, 1), (1, 2), ..., (n, n)}, 2 ∗ k binary
features RockTypei = {Good ,Bad} that indicate which of
the rocks are good and which rocks are temporarily not able
to increase the amount of fuel, and c is the amount of fuel
remaining in the fuel tank. There are four observations: the
unique observation for the initial state, two observations to
denote whether the rock that is sampled is good or bad, and
the last observation is for all the remaining states. After the
coBüchi reduction the POMDPs have 1025, 1281, 3137, and
3921 states, respectively. All the variants were solved in less
than 15 seconds.
Hallway problems. We consider two versions of the Hallway
problems introduced in [23] and used later in [32], [30],
[3]. The idea behind both of the Hallway problems, is that
there is an agent wandering around an office building. It is
assumed that the locations have been discretized so that there
are a finite number of locations where the agent could be.
The agent has a small finite set of actions it can take, but
these only succeed with some probability. Additionally, the
agent is equipped with very short range sensors to provide it
only with information about whether it is adjacent to a wall.
The sensors can ”see” in four directions: forward, left, right,
and backward. Note that these observations are relative to
the current orientation of the agent (N, E, S, W). In these
problems the location in the building and the agent’s current
orientation comprise the states. There are four dedicated
areas in the office, denoted by letters A, B, C, and D. We
consider four objectives in both the Hallway problems:
• Liveness: requires that the D-labeled area is reached.
• Sequencing and avoiding obstacles: requires that first

the A-labeled area is visited, followed by the B-labeled
area and finally the D-labeled area is visited while
avoiding the C-labeled area.

• Coverage: requires that the A, B, and C-labeled areas
are all visited in any order.

• Recurrence: requires that both the A and C-labeled

areas are visited infinitely often.
• Recurrence and avoidance: requires that both A and D-

labeled areas are visited infinitely often, while visiting
B and C-labeled states only finitely many times.

The size of the POMDPs for the smaller Hallway problem
depends on the objective and has up to 453 states. In the
Hallway 2 problem the POMDPs have up to 709 states. All
the variants were solved in less than 21 seconds.
Maze navigation problems. We consider three variants of
the mazes introduced in [15]. Intuitively, the robot navigates
itself in a grid discretization of a 2D world. The robot can
choose from four noise free actions north, east, south, and
west. In every maze there are 4 highlighted areas that are
labeled with letters A, B, C, and D. The objectives for the
robot are the same as in the case of the Hallway problems.
The state space of the problem consists of the possible grid
locations times the number of states of the parity automaton
that specifies the objective. The robot moves from the unique
initial states uniformly at random under all actions to all
the locations labeled with ”+”. Beside the highlighted areas,
the robot does not receive any feedback from the maze.
In locations where the robot attempts to move outside of
the maze or in the wall, the position of the robot remains
unchanged. We consider the same objectives as in the case
of the Hallway problems. The sizes of the models go up to
641 states, and all the variants were solved in less than 12
minutes.

We summarize the obtained results in Table I. For every
POMDP we show the running time of our tool in seconds,
the number of states of the POMDP, and finally the number
of states of the POMDP after the reduction to a coBüchi
objective.
Effectiveness of the heuristics. It follows from [5] that for
solving POMDPs even subset construction is not enough.
Hence without the proposed heuristics, at least an exponen-
tial subset construction is required (and even more), while
explicit subset construction is prohibitive in all our examples.
Thus if we turn-off our heuristics, then the implementation
does not work at all on the examples.

VI. CONCLUSION AND DISCUSSION

In this work we present the first practical approach
for qualitative analysis of POMDPs with temporal logic
properties, and show that our implementation can handle
representative POMDPs that are relevant for robotics ap-
plications. A possible direction of future work would be
to consider quantitative analysis: though the quantitative
analysis problem is undecidable in general, an interesting
question is to study subclass and design heuristics to solve
relevant practical cases of quantitative analysis of POMDPs
with temporal logic properties.

The heuristics we propose exploit the fact that in many
case studies where POMDPs are used, the uncertainty in the
knowledge is quite small (i.e., formally the belief-support
sets are small). While for perfect-information MDPs efficient
(polynomial-time) algorithms are known, our heuristics show
that if the belief-support sets are small (i.e., the uncertainty
in knowledge is small), then even POMDPs with parity
objectives with a small number of priorities can be solved
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Time |S| |S| after
the reduction

Space Shuttle: (3 act., 7 obs.)
small 0.07s 11 23

medium 0.24s 13 27
large 1.01s 15 31

Small Cheese maze: (4 act., 7 obs.)
easy 0.03s 11 23

medium 0.05s 11 23
hard 0.07s 11 23

Large Cheese maze: (4 act., 7 obs.)
easy 0.22s 23 47

medium 0.72s 23 47
hard 6.63s 23 47

Grid: (4 act., 6 obs.)
4× 4 0.69s 33 67
5× 5 1.37s 51 103
6× 6 2.16s 73 147
7× 7 3.94s 99 199
8× 8 5.89s 129 259

RS[4,2]: (4 act., 4 obs.)
Capacity 3 0.46s 1025 1025
Capacity 4 1.00s 1281 1281

RS[4,3]: (4 act., 4 obs.)
Capacity 3 8.70s 3137 3137
Capacity 4 14.98s 3921 3921

Hallway: (3 act., 16 obs.)
Liveness 0.73s 120 121

Seq. and avoid. obstacles 1.89s 276 277
Coverage 2.48s 453 454

Recurrence 1.18s 185 186
Rec. and avoid. 5.04s 180 361

Hallway 2: (3 act., 19 obs.)
Liveness 1.18s 184 185

Seq. and avoid. obstacles 2.53s 436 437
Coverage 4.98s 709 710

Recurrence 1.99s 281 282
Rec. and avoid. 20.02s 276 553

Maze A: (4 act., 6 obs.)
Liveness 23.03s 169 170

Seq. and avoid. obstacles 66.24s 371 372
Coverage 58.50s 573 574

Recurrence 33.57s 267 268
Rec. and avoid. 608.25s 263 527

Maze B: (4 act., 6 obs.)
Liveness 16.18s 154 155

Seq. and avoid. obstacles 103.17s 380 381
Coverage 84.19s 641 642

Recurrence 24.68s 254 255
Rec. and avoid. 668.17s 258 517

Maze C: (4 act., 6 obs.)
Liveness 1.12s 110 111

Seq. and avoid. obstacles 1.56s 267 268
Coverage 1.44s 439 440

Recurrence 0.84s 200 201
Rec. and avoid. 1.24s 116 233

TABLE I
OBTAINED RESULTS

efficiently. The limiting factor of our heuristics is that if
the belief-support sets are large, then due to exponential
construction our algorithms will be inefficient in practice.
An interesting direction of future work would be consider
methods such as abstractions for POMDPs [14] and combine
them with our heuristics to solve large scale POMDPs with
a huge amount of uncertainty.
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